

This is to certify that the Purpose of Test, Description of Test Unit, Load Test on ANSI/SCTE 77-2013- Tier 22 Series and corresponding results as related in American Enclosures report of test titled:

LOAD TESTING CERTIFICATION

ANSI/SCTE 77-2013- Tier 22 SERIES Loading Tests APC243624

Test Date: November 15, 2022

Depict a true and factual account of events to the best of my knowledge and belief.

Authorized Testing, Inc.

Derek R. Gaytan, Quality Manager

A Notary Public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

STATE OF CALIFORNIA

ss.

COUNTY OF RIVERSIDE

On this the 12th day of December 2022, before me ALISSA M. GRIMES, the undersigned Notary Public, personally appeared Derek R. Gaytan, who proved to me on the basis of satisfactory evidence to be the person whose name is subscribed to the within instrument and acknowledged to me that he executed the same in his authorized capacity, and that by his signature on the instrument the person, or entity upon behalf of which the person acted, executed the instrument.

I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.

ALISSA M. GRIMES
Notary Public - California
Riverside County
Commission # 2315760
My Comm. Expires Dec 15, 2023

WITNESS my hand and official seal.

Votary Publ

Hamerican Enclosures Made from over 30 years of experience

Product Compliance Analysis

Vertical Cover Load	Cycle #	Design Load Requirement (lbs)	Design Load Results (lbs)	Deflection (0.500 max)	Results (P/F)
Vertical Design load	1	22k	22540	10 %	D
Vertical Design load	2	22k	25/460	01120	9
Nete: Vertical Design load	3	22k	29 4/6	13465	0
Vertical Design load	4	22k	22:11.8		5
Vertical Design load	5	22k	22 340	. 2489	Đ
Vertical Design load	6	22k	22 266	. 2188	P
Vertical Design load	7	22k	22, 326	. 2344	~
Vertical Design load	8	22k	27.194	, 2031	P
Vertical Design load	9	22k	22.464		0
Vertical Design load	10	22k	22 590	. 2187	7
Vertical Test load	1	33,750	33 790	2399	ก

Vertical Box Test	Cycle #	Design Load Requirement (lbs)	Design Load Results (lbs)	Deflection (0.500 max)	Results (P/F)
Vertical Design load	1	22k	23, 411	.28/3	O.
Vertical Design load	2	22k	22 1.90	,2763	2
Vertical Design load	3	22k	22 960	,2803	5
Vertical Design load	4	22k	29 41.0	.2663	þ
Vertical Design load	5	22k	22 760	2492	2
Vertical Design load	6	22k	22.410	,2431	D
Vertical Design load	7	22k	22460	- 245/	2
Vertical Design load	8	22k	29 321		P
Vertical Design load	9	22k	22 190	2640	0
Vertical Design load	10	22k	22 166	· 2344 · 2031	P
Vertical Test load	1	33,750	34 974	. 3762	0

Lateral Load Test	Cycle #	Design Load Requirement	Design Load Results(lbs)	Deflection (0.572 max)	Results (P/F)
Lateral Design load	1	2400	2409	0018	7
Lateral Design load	2	2400	2520	.0040	P
Lateral Design load	3	2400	2480	637	D
Lateral Design load	4	2400	2442	029	P .
Lateral Design load	5	2400	241.0	03/	P
Lateral Design load	6	2400	2450	, 0.39	2
Lateral Design load	7	2400	2521	.036	7
Lateral Design load	8	2400	2490	.038	7
Lateral Design load	9	2400	2498	. 040	P P
Lateral Design load	10	2400	2467	.023	10
Lateral Test load	1	3600	3840	2220	P

	Results of Analysis	
Product adhered to Test specifications	₹Yes	□ No
Corrective/Preventive Action Created	□ Yes CAR#	e∕No
JR Amé		
Comments: Pass		
Concerns:		
Suggestions		

Quality Control: Homes fues

Date: 11/15/22

This is to certify that the Purpose of Test, Description of Test Unit, Load Test on ANSI/SCTE 77-2013- Tier 22 Series and corresponding results as related in American Enclosures report of test titled:

LOAD TESTING CERTIFICATION

ANSI/SCTE 77-2013- Tier 22 SERIES
Loading Tests
APC132418

Test Date: November 15, 2022

Depict a true and factual account of events to the best of my knowledge and belief.

Authorized Testing, Inc.

Derek R. Gaytan, Quality Manager

A Notary Public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

STATE OF CALIFORNIA

SS.

COUNTY OF RIVERSIDE

On this the 12th day of December 2022, before me ALISSA M. GRIMES, the undersigned Notary Public, personally appeared Derek R. Gaytan, who proved to me on the basis of satisfactory evidence to be the person whose name is subscribed to the within instrument and acknowledged to me that he executed the same in his authorized capacity, and that by his signature on the instrument the person, or entity upon behalf of which the person acted, executed the instrument.

1 certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.

ALISSA M. GRIMES
Notary Public - California
Riverside County
Commission # 2315760
My Comm. Expires Dec 15, 2023

WITNESS my hand and official seal.

Notary Public

Product Compliance Analysis

Vertical Cover Load	Cycle #	Design Load Requirement (lbs)	Design Load Results (lbs)	Deflection (0.500 max)	Results (P/F)
Vertical Design load	1	22k	22 229	N	7
Vertical Design load	2	22k	22 586	.0	3
vertical Design load	3	22k	22 438	R	1
Vertical Design load	4	22k	02.740	Ø	b
Vertical Design load	5	22k	22.840	.ø	Ö
Vertical Design load	6	22k	27 1.96	X	5
Vertical Design load	7	22k	22 3/16	α	b
Vertical Design load	8	22k	22 588	(x	5
Vertical Design load	9	22k	27 416	• 6	4
Vertical Design load	10	22k	27 101	.0	P
Vertical Test load	1	33,750	33891	Ø	Ý

Vertical Box Test	Cycle #	Design Load Requirement (lbs)	Design Load Results (lbs)	Deflection (0.500 max)	Results (P/F)
Vertical Design load	1	22k			P
Vertical Design load	2	22k			P
Vertical Design load	3	22k		-	P
Vertical Design load	4	22k		11	. γ
Vertical Design load	5	22k			P
Vertical Design load	6	22k	10	nO	2
Vertical Design load	7	22k	, 51	X	P
Vertical Design load	8	22k	100	105	2
Vertical Design load	9	22k	10	Jes .	3
Vertical Design load	10	22k	CEN		P
Vertical Test load	1	33,750	- /υ		P

Lateral Load	Cycle #	Design Load Requirement	Design Load Results(lbs)	Deflection (0.572 max)	Results (P/F)
Lateral Design load	1	2400			P
Lateral Design load	2	2400			7
Lateral Design load	3	2400			P
Lateral Design load	4	2400		1	0
Lateral Design load	5	2400		mall	9
Lateral Design load	6	2400	, (The same	6
Lateral Design load	7	2400	(11)	Xe	(p
Lateral Design load	8	2400	100	red	9
Lateral Design load	9	2400	1	~	0
Lateral Design load	10	2400		X	b
Lateral Test load	1	3600			1 7 2

		Results of Analysis	
Product adhered to	Test specifications	Yes	□ No
Corrective/Preventi	ve Action Created	□ Yes CAR#	Ç-Mo
Jii Am 37 Comments:	Pass		
Concerns:	Cant run For text	vertical Bux test	box too small
Suggestions	Can't Yu	n laterul test, bux	tou small For tout

Date: _____

Quality Control:

This is to certify that the Purpose of Test, Description of Test Unit, Load Test on ANSI/SCTE 77-2013- Tier 22 Series and corresponding results as related in American Enclosures report of test titled:

LOAD TESTING CERTIFICATION

ANSI/SCTE 77-2013- Tier 22 SERIES Loading Tests APC484848

Test Date: November 15, 2022

Depict a true and factual account of events to the best of my knowledge and belief.

Authorized Testing, Inc.

Derek R. Gaytan, Quality Manager

A Notary Public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

STATE OF CALIFORNIA

ss.

COUNTY OF RIVERSIDE

On this the 12th day of December 2022, before me ALISSA M. GRIMES, the undersigned Notary Public, personally appeared Derek R. Gaytan, who proved to me on the basis of satisfactory evidence to be the person whose name is subscribed to the within instrument and acknowledged to me that he executed the same in his authorized capacity, and that by his signature on the instrument the person, or entity upon behalf of which the person acted, executed the instrument.

 I^{V} certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.

ALISSA M. GRIMES
Notary Public - California
Riverside County
Commission # 2315760
My Comm. Expires Dec 15, 2023

WITNESS my hand and official seal.

Votary Public

Product Compliance Analysis

Product Compliance Analysis

Laboratory Personnel:

Position:

Item Description: 000 (484848

Polymer Concrete

Test Specification: ANSI/SCTE 77-2013 Tier 15 Tier 22 Referenced Work Instruction: ANSI/SCTE 77-2013

Vertical Cover Load	Cycle #	Design Load Requirement (lbs)	Design Load Results (lbs)	Deflection (0.500 max)	Results (P/F)
Vertical Design load	1	22k	22,546	2501	0
Vertical Design load	2	22k	27 190	. 3060	2
Vertical Design load	3	22k	27 718	. 29 69	P
Vertical Design load	4	22k	22 080	.3/01	0
Vertical Design load	5	22k	23 190	• 3104	2
Vertical Design load	6	22k	22 1,39	. 2907	5
Vertical Design load	7	22k	22 410	- 21,89	5
Vertical Design load	8	22k	29 132		5
Vertical Design load	9	22k	22.660	127-20	0
Vertical Design load	10	22k	27.896	. 2747	P
Vertical Test load	l	33,750	39.960	42.09	Ø

					,
Vertical Box Test	Cycle #	Design Load Requirement (lbs)	Design Load Results (lbs)	Deflection (0.500 max)	Results (P/F)
Vertical Design load	1	22k	22.880	,2016	P
Vertical Design load	2	22k	22.520	. 2210	P
Vertical Design load	3	22k	22,680	, 2/20	P
Vertical Design load	4	22k	22,729	. 2525	5
Vertical Design load	5	22k	22 888	. 2527	D
Vertical Design load	6	22k	22.660	,2039	9
Vertical Design load	7	22k	23,360	2013	5
Vertical Design load	8	22k	22.441	, 2018	\$
Vertical Design load	9	22k	22.466	,2022	P
Vertical Design load	10	22k	22,520	2018	P
Vertical Test load	1	33,750	33,980	3760	P

Lateral Load Vertic Test	Cycle #	Design Load Requirement	Design Load Results(lbs)	Deflection (0.572 max)	Results (P/F)
Lateral Design load	1	2400	24/0	1095	P
Vateral Design load	2	2400	26/0	. 1163	φ
Lateral Design load	3	2400	2590	1194	5
Lateral Design load	4	2400	2491	1267	' P
Lateral Design load	5	2400	14175	.1167	P
Lateral Design load	6	2400	2439	. 1066	2
Lateral Design load	7	2400	2416	. 1238	6
Lateral Design load	8	2400	2488	. 1266	P
Lateral Design load	9	2400	2520	. 290	P
Lateral Design load	10	2400	2540	. 1310	P
Lateral Test load	1	3600	3719	. 1957	D

Product Compliance Analysis

		Results of Analysis	
Product adhered to Test specifications		d Yes de la company de la com	□No
Corrective/Preve	ntive Action Created	□ Yes CAR#	
V (1)			∠ No
Comments:	Pass		
Concerns:	None		
uggestions	None		

Quality Control: Home fon B Date: 11/15/22

This is to certify that the Purpose of Test, Description of Test Unit, Load Test on ANSI/SCTE 77-2013- Tier 22 Series and corresponding results as related in American Enclosures report of test titled:

LOAD TESTING CERTIFICATION

ANSI/SCTE 77-2013- Tier 22 SERIES
Loading Tests
APC173024

Test Date: November 15, 2022

Depict a true and factual account of events to the best of my knowledge and belief.

Authorized Testing, Inc.

Derek R. Gaytan, Quality Manager

A Notary Public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

STATE OF CALIFORNIA

} ss.

COUNTY OF RIVERSIDE

On this the 12th day of December 2022, before me ALISSA M. GRIMES, the undersigned Notary Public, personally appeared Derek R. Gaytan, who proved to me on the basis of satisfactory evidence to be the person whose name is subscribed to the within instrument and acknowledged to me that he executed the same in his authorized capacity, and that by his signature on the instrument the person, or entity upon behalf of which the person acted, executed the instrument.

I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.

ALISSA M. GRIMES
Notary Public - California
Riverside County
Commission # 2315760
My Comm. Expires Dec 15, 2023

WITNESS my hand and official seal.

otary Public

Hamerican Enclosures Made from over 30 years of experience

Product Compliance Analysis

Vertical Cover Load	Cycle #	Design Load Requirement (lbs)	Design Load Results (lbs)	Deflection (0.500 max)	Results (P/F)
Vertical Design load	1	22k	22.268	.1795	P
Vertical Design load	2	22k	22 11811	1808	D
Vertical Design load	3	22k	22 460	, 1837	P
Vertical Design load	4	22k	22 110	1843	P
Vertical Design load	5	22k	22740	1818	D
Vertical Design load	6	22k	22 1.00	1814	P
Vertical Design load	7	22k	22 341	1788	P
Vertical Design load	8	22k	22 688	18/5	\$
Vertical Design load	9	22k	22 178	17.75	Φ
Vertical Design load	10	22k	22 198	1776	P
Vertical Test load	1	33,750	39,780	.2017	P

Vertical Box Test	Cycle #	Design Load Requirement (lbs)	Design Load Results (lbs)	Deflection (0.500 max)	Results (P/F)
Vertical Design load	1	22k	22366	.2143	P
Vertical Design load	2	22k	22.560	,2107	G,
Vertical Design load	3	22k	22 595	. 2195	P
Vertical Design load	4	22k	27.344	. 2166	P
Vertical Design load	5	22k	21 195	.2107	P
Vertical Design load	6	22k	20 249	7124	P
Vertical Design load	7	22k	22.178	2107	P
Vertical Design load	8	22k	22,560	,2144	P
Vertical Design load	9	22k	22.866	, 2173	P
Vertical Design load	10	22k	22 560	, 2144	7
Vertical Test load	1	33,750	24.090	.2276	P

Lateral Load Veriir Test	Cycle #	Design Load Requirement	Design Load Results(lbs)	Deflection (0.572 max)	Results (P/F)
Lateral Design load	1	2400	2436	. 3560	9
Lateral Design load	2	2400	2431	,3970	P
Lateral Design load	3	2400	2512	. 4329	P
Lateral Design load	4	2400	2609	-4610	P
Lateral Design load	5	2400	2570	. 21949	P
Lateral Design load	6	2400	2546	. 4416	P
Lateral Design load	7	2400	2460	3996	0
Lateral Design load	8	2400	1538	, 4568	P
Lateral Design load	9	2400	2424	4490	9
Lateral Design load	10	2400	250%	.4420	φ'
Lateral Test load	1	3600	3620	. 419.62	P

Product Compliance Analysis

		Results of Analysis	
Product adhere	d to Test specifications	₹Yes	□ No
Corrective/Preve	entive Action Created	□ Yes CAR#	
		- TOO DATES	No
311			
	(10)		Control of the Contro
Comments:	D		
oonments.	Pass		
- 7.4H			
oncerns:			
	None		
N/OV			
Jan.			
ggestions	A 1		
	None		

Quality Control: | Date: 11/15/27

This is to certify that the Purpose of Test, Description of Test Unit, Load Test on ANSI/SCTE 77-2013- Tier 22 Series and corresponding results as related in American Enclosures report of test titled:

LOAD TESTING CERTIFICATION

ANSI/SCTE 77-2013- Tier 22 SERIES
Loading Tests
APC3011824

Test Date: November 15, 2022

Depict a true and factual account of events to the best of my knowledge and belief.

Authorized Testing, Inc.

Derek R. Gaytan, Quality Manager

Dorok N. Gaylari, adjanty Mariager

A Notary Public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

STATE OF CALIFORNIA

} ss.

COUNTY OF RIVERSIDE

On this the 12th day of December 2022, before me ALISSA M. GRIMES, the undersigned Notary Public, personally appeared Derek R. Gaytan, who proved to me on the basis of satisfactory evidence to be the person whose name is subscribed to the within instrument and acknowledged to me that he executed the same in his authorized capacity, and that by his signature on the instrument the person, or entity upon behalf of which the person acted, executed the instrument.

I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.

ALISSA M. GRIMES
Notary Public - California
Riverside County
Commission # 2315760
My Comm. Expires Dec 15, 2023

Notary Public

WITNESS my hand and official sea

Hamerican Enclosures Made from over 30 years of experience

Product Compliance Analysis

Vertical Cover Load	Cycle #	Design Load Requirement (lbs)	Design Load Results (lbs)	Deflection (0.500 max)	Results (P/F)
Vertical Design load	1	22k	2010	:2115	P
Vertical Design load	2	22k	02/30	,21168	ଚ
Vertical Design load	3	22k	72 GEX	,2126	0
Vertical Design load	4	22k	22 450	2122	0
Vertical Design load	5	22k	23 100	2114	100
Vertical Design load	6	22k	27 (80	1070	7
Vertical Design load	7	22k	27 (10	2020	6
Vertical Design load	8	22k	20 (30	1912	0
Vertical Design load	9	22k	22 630	1941	5
Vertical Design load	10	22k	22 280	1937	9
Vertical Test load	1	33,750	33 841	4100	0

Vertical Box Test	Cycle #	Design Load Requirement (lbs)	Design Load Results (lbs)	Deflection (0.500 max)	Results (P/F)
Vertical Design load	1	22k	22.290	.30	P
Vertical Design load	2	22k	22 440	709	D
Vertical Design load	3	22k	22 (80		P
Vertical Design load	4	22k	22642	,00	Φ
Vertical Design load	5	22k	221.90	1665	T O
Vertical Design load	6	22k	22 670	161015	10
Vertical Design load	7	, 22k	22 9521	10015	1
Vertical Design load	8	22k	22.810	,00015	6
Vertical Design load	9	22k	22 1.09	1029	0
Vertical Design load	10	22k	22 1,60	10029	P
Vertical Test load	1	33,750	33 880	, MSA	ø

Lateral Load Test	Cycle #	Design Load Requirement	Design Load Results(lbs)	Deflection (0.572 max)	Results (P/F)
Lateral Design load	1	2400	2480	31138	Ģ
Vateral Design load	2	2400	2500	,3890	D
Lateral Design load	3	2400	2470	,4003	Φ,
Lateral Design load	4	2400	24.90	, 4212	D
Lateral Design load	5	2400	2440	, 4218	S
Lateral Design load	6	2400	2530	.4375	A
Lateral Design load	7	2400	2460	4210	ູກ
Lateral Design load	8	2400	2450	. 41215	5
Lateral Design load	9	2400	2290	.3892	5
Lateral Design load	10	2400	23/6	:4215	5
Lateral Test load	1	3600	3790	, 56.33	5

		Results of Analysis	1975
Product adhered to Test specifications		Yes	□ No
Corrective/Preventi	ve Action Created	□ Yes CAR#	_ No
L Velst			
JH A			
Comments:			
	Pass		
	,0(25		
1			
3103			
C. Bro.			
Concerns:			
	None		
5957			
r - Kills			
uggestions			
	None		

2 of 2

Date: 11/15/27

Quality Control: Homes June 3

This is to certify that the Purpose of Test, Description of Test Unit, Load Test on ANSI/SCTE 77-2013- Tier 22 Series and corresponding results as related in American Enclosures report of test titled:

LOAD TESTING CERTIFICATION

ANSI/SCTE 77-2013- Tier 22 SERIES
Loading Tests
APC366036

Test Date: November 15, 2022

Depict a true and factual account of events to the best of my knowledge and belief.

Authorized Testing, Inc.

Derek R. Gaytan, Quality Manager

A Notary Public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

STATE OF CALIFORNIA

SS.

COUNTY OF RIVERSIDE

On this the 12th day of December 2022, before me ALISSA M. GRIMES, the undersigned Notary Public, personally appeared Derek R. Gaytan, who proved to me on the basis of satisfactory evidence to be the person whose name is subscribed to the within instrument and acknowledged to me that he executed the same in his authorized capacity, and that by his signature on the instrument the person, or entity upon behalf of which the person acted, executed the instrument.

I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.

ALISSA M. GRIMES
Notary Public - California
Riverside County
Commission # 2315760
My Comm. Expires Dec 15, 2023

WITNESS my hand and official seal.

Votary Public

Hamerican Enclosures Made from over 30 years of experience

Product Compliance Analysis

Vertical Cover Load	Cycle #	Design Load Requirement (lbs)	Design Load Results (lbs)	Deflection (0.500 max)	Results (P/F)
Vertical Design load	1	22k	22,440	2191.	0
Vertical Design load	2	22k	22.780	2734	2
Vertical Design load	3	22k	22.1.80	2722	5
Vertical Design load	4	22k	22 928	7	D
Vertical Design load	5	22k	24 1,90	7752	P
Vertical Design load	6	22k	23,941	29 2/	0
Vertical Design load	7	22k	22,488	2,00	5
Vertical Design load	8	22k	22.481	2.98	0
Vertical Design load	9	22k	22,560	2715	5
Vertical Design load	10	22k	22490	21.08	P
Vertical Test load	1	33,750	33,960	1102	0

Vertical Box Test	Cycle #	Design Load Requirement (lbs)	Design Load Results (lbs)	Deflection (0.500 max)	Results (P/F)
Vertical Design load	1	22k	22.472	, 2690	P
Vertical Design load	2	22k	22,460	,27.20	7
Vertical Design load	3	22k	22,881	2746	D
Vertical Design load	4	22k	23,431	21.92	5
Vertical Design load	5	22k	22,480	2722	P
Vertical Design load	6	22k	22, 668	2721	2
Vertical Design load	7	22k	22,441	26.93	P
Vertical Design load	8	22k	22,520	2703	P
Vertical Design load	9	22k	22,480	2722	b
Vertical Design load	10	22k	22,844	2754	R
Vertical Test load	1	33,750	34.520	4147	0

Lateral Load Test	Cycle #	Design Load Requirement	Design Load Results(lbs)	Deflection (0.572 max)	Results (P/F)
Lateral Design load	1	2400	2560	, 2304	7
Lateral Design load	2	2400	2596	,2364	2
Vateral Design load	3	2400	2441	2196	6
Lateral Design load	4	2400	2438	2196	P
Lateral Design load	5	2400	2567	2216	0
Lateral Design load	6	2400	2938	2645	6
Lateral Design load	7	2400	2467	12221	0
Lateral Design load	8	2400	2566	.2310	P
Lateral Design load	9	2400	2544	2206	6
Lateral Design load	10	2400	2589	, 2330	P
Lateral Test load	1	3600	3790	, 2431	0

		Results of Analysis		
Product adhered to Test specifications		des €	□ No	
Corrective/Preve	ntive Action Created	□ Yes CAR#	_ No	
Comments:	Pass			
oncerns:	None			
ggestions	None			

Quality Control: Homosfers B Date: 11/15/22